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ABSTRACT 

The Wigner Distribution (WD) is a bilinear signal transformation pos- 
sessing several properties that are useful in time-frequency signal 
analysis. Fast Fourier transform (FFT) techniques have been used to 
approximate the WD. However, the signal must be sampled at twice the 
Nyquist rate in order to avoid aliasing errors. This paper deomonstrates 
that implicit spline interpolation of a continuous time signal or an 
under sampled discrete time sequence can be used to reduce aliasing 
errors when approximating the WD. The method is said to be implicit 
since the interpolated samples are never actually computed. An efficient 
implicit interpolation algorithm that takes advantage of the special 
structure  and  symmetry  of   the WD is  proposed. 
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REDUCING  ALIASING  IN  THE WIGNER  DISTRIBUTION 
USING   IMPLICIT SPLINE  INTERPOLATION 

by 

G.F.   Boudreaux-Bartels  and  T.W.   Parks 

I.      Introduction 

The Wigner Distribution   (WD), 

W^(t,a))  =   J   x(t + T/2)x*(t - T/2)e  ^""^dr (1) 

of a continuous time signal z(t) is a bilinear signal transformation 

that is useful for analyzing signals whose frequency content changes 

with time. The WD originated in the field of quantum mechanics, and has 

been used to characterize the time—varying signals found in optical com- 

munications, speech waveforms and radar/sonar patterns. The ambiguity 

function  of  x(t)  is  related  to  W (t,(i)) via two Fourier transforms. 

Wigner distributions exhibit several desirable properties: 1) the auto 

WD of  a  real  or complex signal x(t) is real, 2) W (t,a)) has the same 

time and frequency support as x(t), and 3) shifts in time or frequency 

on x(t) produce corresponding shifts in W (t.to). In addition, the aver- 

age frequency of W (t,u), i.e. fixed t^, is equal to the instantaneous 

frequency, whereas the average time of W (t,o)^) is equal to the group 

delay of the signal. Integration of W (t,a)) with respect to the fre- 

quency (time) variable for a fixed time t_ (frequency u^) yields the 

instantaneous power (energy density) of the signal at t_((o ). The 

integral over the entire (t.io) plane is equal to the signal energy. 



W (t,(i>) can be viewed as the Fourier Transform of 

g^(t.T) = x(t + T/2)i*(t - xl2)   . (2) 

the product  of  appropriately   shifted versions  of  x(t)     and     its     complex 

conjugate, x (t). When the Fourier integral cannot be calculated in 

closed form, digital signal processing techniques are often invoked to 

obtain numerical approximations. A typical signal processing approach 

is to   sample   either  g   (t,x)   or  x(t),   window   the  resulting   sequence,     and 

then compute its discrete Fourier Transform (DFT). However, x(t) must 

be sampled at twice the Nyquist rate [2] to avoid aliasing errors when 

calculating W (t,(o). In many signal processing situations where under- 

sampling has occurred, anti-aliasing digital filters can be designed to 

minimize aliasing errors [4,5]. An alternate approach is to view the 

sequence of samples as part of a spline function approximation to the 

continuous-time signal x(t). The Fourier integral of a spline approxi- 

mation can be easily calculated using certain predetermined weighting 

functions, called diminishing factors [6], to reduce aliasing errors. 

In many cases, the spline function analysis method produces a smaller 

approximation error to the Fourier integral than the DFT of the sequence 

of   samples  does. 

It is the purpose of this research to extend the theory of implicit 

spline approximations of the Fourier integral to similar approximations 

of the Wigner distribution. We determine the two-dimensional general- 

ized diminishing operators needed to correct the aliasing errors gen- 

erated when only an undersampled version of x(t) is available to approx- 

imate    W   (t,o)).        This     implicit     interpolation     process     "fills-in"   the 



sampled signal, i(nT), between the signal samples, increases the effec- 

tive sampling rate, and hence reduces the effects of aliasing when cal- 

culating the Wigner distribution. The spline approximation can be cal- 

culated very efficiently if one takes advantage of the special structure 

and   symmetry  of Wigner   distributions. 

II.     Theoretical   Developments 

Classen et  al   [2]   and Chan   [3]   have   studied  the  effects  of   sampling 

and windowing  i(t)   in  order  to  approximate  W   (t,o)).      If  x(t)   is  bandlim- 

ited to (1)  ,   i. e. 
s 

CD 

X(a))   =    r   x(t)   e"-''^*dt  = 0,   Ul   >  u     = 2nf     , (3) J —     s s 

then W (t,(i)) is also bandlimited to u . The DFT can be  used  to  calcu- 
X s 

lated  (3)  on a  discrete  grid of frequency points if x(t) is finite 

length and sampled every T^ TT" seconds.  However, twice as many  sam- 
s 

pies    of    i(t),     is    needed    to    avoid    aliasing  errors when  calculating 

W   (t,<i))   on  the   same   frequency   grid,   i.e.   T _£ . 
s       ■    , -, 

If the signal x(t) has been sampled at the Nyquist rate,  then one 

can avoid aliasing errors in approximating W (t,u) by interpolating the 

sampled sequence. However, in addition to the computational expense 

involved in interpolation algorithms, doubling the number of samples 

more than doubles the nxssber of calculations needed to approximate 

W (t,(i>).  An alternate approach to minimizing the effects of aliasing is 

to view the undersampled sequence as  the  equally  spaced  knots  of  a 



spline approximation to the continuons-time signal x(t). 

Let the discrete signal {x(n)} represent the uniformly spaced  sam- 

ples of the continuous time signal, i(t).  That is. 

x(n) = x(nT) ,    n= .... -2, -1, 0, 1, 2, ... . 

The Fourier transform of this sampled sequence is 

(4) 

X(f) =   5   i(n) 
n = —o 

-j2nfnT 
(5) 

Furthermore, assume x(t) is the first-order spline approximation of x(t) 

that interpolates the samples, x(nT). The Fourier integral of the 

spline approximation 

00 

X(f) = J x(t)e~^'^"^*dt = X(f) (6) 

is easy to compute [6] since 

X(f) = X(f) [^^]^ (7) 

is the product of the Fourier transform (5) of the signal  samples,  and 

2 
the  "diminishing  factor"  [(sinnfT)/nfT] .  This diminishing factor is 

predetermined according to the order of  the  spline  approximation  and 

weights  the  periodic  spectrum  of the undersampled sequence, x(n), to 

produce the unaliased spectrum of the continuous time spline  approiima— 

A 

tion,  x(t).   This  technique is said to be "implicit" since the spline 

A 

function,     x(t)      is     never       actually       computed. Note        that        since 

2 
[(sinnfT)/nfT]     is  the  Fourier   transform  of   the   triangular   pulse 



p(t) 
S- 1^1 

■\ 

Itl   <   T 
0 '     otherwise 

V 

(8) 

the spline, or piecewise linear, approximation, i(t), can be written as 

the  convolution of  the  discrete  sequence  {i(n)} and the triangular 

■ ■ -i 

interpolating function, p(t): 

!(t) =  J  x(n)p(t - nT) =  J  x(nT)p(t - nT) (9) 
IJ=»-CO 

In order   to  apply   these   results   to Wigner   distributions,   let 

• — ■ 

W^(t,(o)   =   J   x(t + x/2)x   (t - T/2)e   -"""^dT = W^(t,a)) (10) 

be the WD of the spline approximation, x(t).  Plugging (9) into (10)  we 

obtain 

00       00 

W^(t,o)) =     1 Y     x(lT)x*(mT)W (t - ■— T.u) (11) 
i=—00 jii=—«> 

where W  (t,(i))   is  the WD of p(t). 
P 

Evaluating   (11)   at   t =  nT,   we  find 

00 00 

W^(nT.o.)   =     J I      x[(n +   i)T]x*[(n -  m)T]e"J'"^ ^""""^^E^ T.a,]        (12) 
!=:—<»   ni=—<= 

Since W   [t,u]  = 0,  V   Itl   >  T,   (12)   reduces  to 
P ~ ~ 



1    " 
W^(nT.u)) =  J  { J  i(n + i)i((n - q) - l)e"-'''^*^}x 
X        q=-l  i=-o» 

{e'J'^^W [qT/2,a)]) (13) 
P 

Equation (13) is similar in form to (7) since the expression in the 

first  set  of brackets is merely the discrete cross Wigner distribution 

[2] of the nndersampled sequences i(n) and x(n - q). Equation (13) 

could be calculated by appropriately weighting, or diminishing, three 

cross Wigner distributions. However, a much more efficient method can 

be  obtained  by  taking  advantage of the special symmetry that results 

when one computes the DFT, with respect to n, of W (nT,u). 

i -"  ■ .. X ' 

III.     Implementation i 

Define   the   convolution  sequence   (for  fixed <i)») 

h     (n)  =     >      (x(i)e       "     )(x(n -   i)e       " ) 
"o i=--« 

=     2     i(i)i<n -   i)e e    " (14) 
]^=3—00 

Note   that. 

h     (2n)   = W^(nT,u  ) ^ ,       ,     . 

is the discrete WD of the samples x(n) evaluated at the  frequency,  w . 

Let .■-,,-■ 1 . 



H     (z)   =     5      ^     (n)z"° (16) 
0 n=-<»       0 

be   the  z-transfonn  of  h     (n).     Combining   (13-14),   we   obtain 

1 
W   (nT,a))   =     5      t  (2n -   q)W   [q T/2,a)]   . (17) 

If we   define   the   z-transfonn 

{(Z.UQ)  =     5     W^(nT,o)Q)z  ° (18) 
n=-«>     I 

and insert (16-17) into (18), we obtain 

t(z,a,^) = J I  { i H (z^^VJ")z^^V-'"^^)W [q T/2,o,J  (19) 

Furthermore, if we assume that x(n) is finite length, N, and also assume 

(without loss of generality) that x(n) is causal, then the DFT can be 

used to evaluate (16) on a set of 2N discrete normalized frequency 

points, i.e. 

H  (e   ) =  >  h  (n)e 
•^0 nfo  '-0 

X(_i_ ^ !!0)£*(jzk ^ !0 (20) 
^2NT 2it'     ^2NT  27i' 

where X(f)   is  the  length 2N DFT of   the  undersampled   sequence,     x(n)     and 

(0-     is    one     of     the     discrete    frequency    points w-.  = 0,  + rj^r;,  ixrr2. 



2 — 
+ "^Z^'   •••   •     Similarly,   (19)   can be   computed  on  a  NiN   grid  of     normal- 

ized  frequency  points  by   noting  that ' 

f(e .^)   = J    2    ^2     (e e  •>      )   ^      e e  •'      "*«   [q T/2.^] 
i=0    ^ q=-l 

2   .fg   ^^^^ 2NT ^^   ^ 2NT '^ 

I   {W   (0.^)   + 2(-l)*cos(|^)W   [T/2,||n]} (21) 

since  W   (t.u)   =  W   (-t.u)   for  p(t)   real   and   symmetric.     Thus,   the     length 

2N    DFT    of  x(n)   and  the  length N vectors  W   (0.||m)   and W   [T/2,^]   need 

only be  computed once  and  stored in memory.     Then for  each    m    =    0,     1, 

.12, 
...,     N    -     1,   the m       column  He ,rrm),   k = 0,   1,   ....   N -  1   and   the 

length N  inverse DFT, , 

W(nT.-j^)   - ^    I    f (e .^)e 
t—u 

are computed using Fast Fourier  Transform  (FFT)  techniques  to  effi- 

ciently obtain the spline approximation of the Wigner Distribution. 

IV.  Examples 1 

The  length N =  41   equal-ripple  finite   impulse   response   in  Figure     1 

was     designed     using     the     Remez     Exchange   algorithm   [7].      Its  frequency 
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response, shown in Figure 2 was designed with  a  unity  passband  from 

Fp = 0.0 to Fp = 0.15.  The stopband extends from normalized frequency 
1 2 

F„ = 0.2 to F_ = 0.5.  The passband and stopband errors were  equally 
'•l ^2 

weighted.   Note  that the impulse response in Figure 1 was sampled more 

than twice as fast as required by the  Nyqulst  criterion  in  order  to 

avoid aliasing errors when calculating its discrete Wigner distribution 

shown in Figure 3,  The WD shown in Figure 4  is  that  of  the  impulse 

response  in  Figure  1  decimated by  a  factor of 2.  Even though the 

reduced sampling rate satisfies the Nyquist criterion, it  is  not  fast 

enough,  i.e.  it  does  not meet the requirement that T <_ .  , to avoid 
s 

aliasing errors in the WD. Finally, the WD of the spline approximation 

of the decimated impulse response is shown in Figure 5. Note that the 

effects of aliasing have been removed. The first order spline, or 

piecewise-linear, approximation did very well approximating the low fre- 

quencies and only moderately well approximating the high frequencies, as 

would be expected. Higher order splines can be used to obtain better 

approximations. 

V.  Conclusions 

Implicit spline interpolation of a sampled sequence has been used 

to approximate the Wigner distribution and reduce the effects of alias- 

ing errors that occur when a signal is undersampled. Recall that sig- 

nals must normally be sampled at twice the Nyquist rate in order to 

avoid aliasing when calculating its WD. The implicit approximation 

technique is an efficient alternative to oversampling or explicitly 

interpolating a given sampled signal.  The symmetries resulting  in  the 
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doable frequency plane in (21) can be utilized to compute both the 

discrete Wigner distribution and the spline approximation of the WD very 

efficiently. . 
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Fignre  Captions 

Figure  1. Impulse   response   of   a  length N =  41   equal-ripple  lowpass 

filter  designed with  unity  passband from 

F_    = 0.20   to F_    = 0.15   and   stopband F„     = 0.20   and 

F„     = 0.5.     The   sampling   interval,   T,   is 
^2 

assumed  to be   equal   to 1.0. 
•       - "   .■ ■■   ■ ■ 

Figure 2. Frequency  response   of   a  length N =  41   equal-ripple 

lowpass filter  designed with unity  passband from ! 

Fp    = 0.0  to Fp    = 0.15   and ' 

^ ^ i 
stopband ranging from F_  = 0.20 to F_  = 0.5. 

1 2 

Figure 3. Time   (n)   vs.   frequency   (u)   plot   of   the Wigner 

distribution   (WD)   of   the   impulse  response   shown in | 

Figure  1.      (Sampling   interval   T = 1.0) 

Figure  4. Time   (n)   vs.   frequency   (u)   plot   of   the WD of   the 

decimated  lowpass   impulse   response.     (Sampling   interval 

T = 2.0) 

Figure  5. Time   (n)   vs.   frequency   (w)   plot   of   the  WD of   the 

first-order   spline   approximation  using   the   decimated 

lowpass   impulse   response   sequence   as  the   equally   spaced 

spline   knots.     (Sampling  interval   T = 2.0). 
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